OBC (800V/22kW) Using Wide-Bandgap Semiconductors

Benefits

Customer satisfaction improvement by 800V system and 22kW OBC introduction.

- AC/DC Charging time reduction
- DC conduction loss reduction
- Power consumption reduction
- Weight reduction

*2 : Low Voltage DCDC converter

*3: Battery Management System

OBC (800V/22kW) Using Wide-Bandgap Semiconductors

Technical Advantages

High Efficiency over wide output voltage/ current range

DAB with phase/frequency multi control algorithm by Employing Multimode Control Strategy DAB is used to extend operating time because use case is changed by bi-directional function. (V2L: x1.6 times, V2G: x10.6 times the operating time required against uni-directional OBC)

1200V GaN device

- High power/High voltage
 Realize "800V/22kW" circuit technology
- High power density2.2kW/L by 500kHz switching with GaN device
- High efficiency 96.5% by SiC→98% by Gan device (PFC+DCDC)

GaN device spec. : voltage/current : 1200V/40A

On-resistance : $15.5m\Omega$ (target)

DAB*4 topology (11kW/Branch)

*4 : Dual Active Bridge

Total Efficiency (SiC)

Comparison Si vs SiC vs GaN

	Si - MOSFET	SiC - MOSFET	GaN HEMT (on GaN)
Bandgap [eV]	1.1	3.3	3.4
Frequency	∼1MHz	~200kHz	∼1MHz
Voltage	∼1kV	∼several kV	~1200
Performance index [εμeEc3]	1	440	1130

OBC (800V/22kW) Using Wide-Bandgap Semiconductors

Applications

